If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2=1000
We move all terms to the left:
y^2-(1000)=0
a = 1; b = 0; c = -1000;
Δ = b2-4ac
Δ = 02-4·1·(-1000)
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{10}}{2*1}=\frac{0-20\sqrt{10}}{2} =-\frac{20\sqrt{10}}{2} =-10\sqrt{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{10}}{2*1}=\frac{0+20\sqrt{10}}{2} =\frac{20\sqrt{10}}{2} =10\sqrt{10} $
| 16x+11=12x-15 | | 5x+13=-92 | | (5u+1)(2+u)=0 | | 5x=100, | | x+24=26, | | 1x=47, | | 7x=7, | | x-3=9, | | 66=2(2x+1)+2(x+5) | | 7/4x=2/3 | | -2w-32=-9(w+2) | | 15+3x=-2x+35 | | (17+x)+2x+x=161 | | 3x(2-5x)-(x-3)=0 | | -3(-7v+6)-9v=4(v-8)-4 | | 20-5p-5+3p=-(2p-15) | | 828=10x+2x^2 | | 3x-21=2x+30 | | (6+x)(x)=112 | | (2/5)x-7=41 | | 5(x-2=3 | | 14n+18=35n+11 | | 3x-27=x+11 | | 3(x-2)^2(x+5)=3(x+1) | | (3b+13)(5b−6)=0 | | 3(x-2)^2(x+5)=3 | | 55x+(-65x)=100 | | -6(7x-1)+7=-42x+13 | | 5x-10=200 | | 4x+2=22+2x | | 0=55-(1.6xD) | | 18x²-39x-15=0 |